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The validity of the Friedman method is assessed for systems of overlapping reactions. By 
means of mathematical analysis and numerical examples it is shown that, in the case of 
competitive reactions, the method gives the true value of the instantaneous mean activation 
energy. However, some error may be incurred if this method is applied to systems of independent 
reactions. The relative accuracy of the Friedman and Ozawa Flynn-Wall methods is discussed 
in respect of complex systems of reactions. 

The kinetic methods commonly used in thermal analysis have been derived for 
single reactions. For  systems involving multiple reactions, the inappropr ia t e  
application of  such methods can lead to misleading results [1-4]. However, it has 
been shown that the Ozawa-Flynn-Wal l  (OFW) method [5-7] can give meaningful 
values of  the activation energy in a wide range of  circumstances [1]. The Friedman 
method is related to the O F W  method inasmuch as they both rely on the use of  
several different heating rates; both provide separate values for the activation 
energy at.different levels of  conversion; and both are independent of  the form of the 

kinetic equation. It is therefore of  interest to find out whether the Friedman method 
is also appropriate  to the analysis o f  complex systems of  reactions. The method is 
already being used for such systems e.g. to demonstrate  the variation in activation 
energy during the course of  lignin pyrolysis [8]. 

The Friedman method has been tested against computer-generated data for 
multiple reactions (both independent and competitive), and the activation energies 
obtained were of  comparable  magnitude to those used to generate the data [3]. It is 
the purpose of  this paper  to establish the extent to which such results can be 
generalized. The reference point used as the "correct"  activation energy is the 
instantaneous mean [1], as given by Eq. (1). 
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This is the average of  those reactions occurring at a given 

~viEi 
El.st - (1) 

Svi  

instant in time, weighted according to their respective rates, v~. Einst will, in general, 
vary with the extent of  conversion and, to a lesser extent, will also vary with the 
heating rate. 

Application of the Friedman method to multiple reactions 

The basic Friedman method 

The Friedman method [9] is based on the Arrhenius plot, but the logarithm of the 
reaction rate (at constant degree of conversion, ~) is used in place of  the logarithm 
of the rate constant. A series of runs is performed at different heating rates to 
provide data at a range of temperatures. The basic equation used is Eq. (2). 

( d ~ ) _  E + In (Af(ct)) (2) 
In ~ -  R T  

At constant 7 the last term in Eq. (2) is constant, and so a plot of ln  (d~/dt) against 

I/T, gives a straight line of slope ( - E / R ) .  
For complex systems the activation energy, E, will vary slightly with temperature 

because, at a given ~, the importance of the various component reactions varies with 
heating rate [10]. Thus a Friedman plot will not be an exact straight line, although 
the use of this method [3, 8] indicates that in practice satisfactory linearity is 
generally obtained. In general, a Friedman plot will yield a gradient, me, which is 
given by Eq. (3). The value of the activation energy, Ev, is then given by Eq. (4), 

where v is the total rate of reaction. 

= me ~-(I~T) //" (3) 

(c~ In (d~t/dt)'~ 
Ee = -- Rmv = - R ~ ( 1 - ~  J~ 

(4) 
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Application to competitive reactions 

For a system of competitive reactions the rate of a single reaction is given by Eq. 
(5), and the total rate is given by Eq. (6). 

(5) 

(6) 

vl = Ai exp ( -  E J R T ) f i ( ~ )  

v = S,v i = S,A i exp ( -  Ei /RT) f i (o t )  

,, = SA t exp ( - E i / R T )  .~T- 5 .  f~(ot) 

(7) 
l �9 

-- R ~  2 ~'viEi 

Differentiation of Eq. (6) with respect to T, at constant ~t, gives the differential 
which is required in Eq. (4). In this way Eq. (8) is obtained, which is identical in form 
to Eq. (1). 

EF :. l_ EviEi _ z~viE i 
v 2:vi (8) 

Thus we have the important result that, for competitive reactions, the Friedman 
method gives the exact value of the average activation energy. 

Application to independent reactions 

For  independent reactions the individual rates are given by Eq. (9), and the 
overall rate by Eq. (10). 

vi = ciAi exp ( -  E J R T )  f i ( ~ )  (9) 

v = Evi = EciAi exp ( -  EJRT)f~(ct i )  (10) 

In this case the partial differentiation with respect to T gives Eq. (11). 

where 

k, = A t exp ( -  E i / R T )  (12) 

The second term on the right hand side of Eq. (1 l) arises because the composition 
of the mixture is not constant for constant ~, but does vary slightly with heating rate 
(and hence with T). If Eq. ( l l )  is used with Eq. (4), we obtain Eq. (13). 

fF:ainstJf- RT2 , (O~ - v Zkif i(~)ei\~T], (13) 

13 J, Thermal Anal. 32, 1987 



11813 DOWDY: ACTIVATION ENERGIES FOR COMPLEX SYSTEMS 

Eq. (13) indicates that a definite relationship exists between Er and Ei,~t. The 
difference between the two is determined by the rate constants, k~, of the individual 
reactions; by the variation in composition with temperature, c~(dotJdT),; and by 
the differential of the individual rate equations f'~(~t~). This rather complicated 
expression is difficult to quantify, but its qualitative behaviour can be readily 
ascertained. 

The sum of the variation in composition is zero, as shown by differentiation of 
Eq. (14) to give Eq. (15). 

ct = Zcia i (14) 

o = j 

Thus the final term in Eq. (1 3) will disappear (and EF will equal Eins, ) if the values 
ofkif;(~q) are equal. The circumstances in which this can occur are described below, 
firstly for first-order reactions, and then for more general cases. 

In the case of first-order reactionsf~(0tl) is simply - 1. Thus Er becomes equal to 
Ei~st if the rate constants, k~, for the individual reactions are equal. This is 
equivalent to saying that a compensation relationship applies betweert E~ and .4~. 
Considering a Situation where such compensation does not occur, i.e. the A~ are 
equal or undercompensating, then k~ will decrease with increasing E~. Thus the 
contribution of reactions of low E~ to the sum in Eq. (13) will be exaggerated. Now, 
for these reactions ~t i will decrease with T(or fl), at constant at [10], i.e. (t3oti/dT)~ is 
negative, andf'i(Gq) (t%q/dT)~, will be positive. Thus positive deviaton from E ~  will 
be expected for under-compensated systems, and conversely, negative deviations 
will occur for over-compensated systems. Computer-simulated examples of these 
situations are given below. 

For reactions of  higher order than first, f~(~q) will still be negative, but will be 
proportional to some power of (1 - at). In' these circumstances the products kff;(ot~) 
are equal at some stage intermediate between equal rate constants and equal extents 
of  conversion, i.e. slightly less compensation is required. 

If one of the reactions occurring is "autocatalytic", i.e.f;(0q) is positive, then the 
components of the sum in Eq. (1.3) will no longer tend to cancel, and quite large 
errors could occur. 

J. Thermal Anal.,32, 1987 
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Computer simulation 

Competitive reactions (cases 1 and 2) 

T w o  c a s e s  w e r e  c o n s i d e r e d .  T h e  f i rs t  w a s  O z a w a ' s  e x a m p l e  [4] o f  t w o  r e a c t i o n s  

d i f f e r i n g  g r e a t l y  in  t h e i r  a c t i v a t i o n  e n e r g i e s  ( 84  k J  m o l - 1 ) .  T h e  s e c o n d  is a m o r e  

r ea l i s t i c  e x a m p l e  o f  t w o  r e a c t i o n s  w i t h  a c t i v a t i o n  e n e r g i e s  d i f f e r i n g  b y  

20  k J  m o l -  1. I n  b o t h  c a s e s  s u b s t a n t i a l  c o m p e t i t i o n  is o n l y  p o s s i b l e  b e c a u s e  t h e  p r e -  

e x p o n e n t i a l  f a c t o r s ,  As, w e r e  c h o s e n  t o  c o m p e n s a t e  f o r  t h e  d i f f e r e n c e  in  a c t i v a t i o n  

e n e r g i e s .  

T h e  r e s u l t s  o f  t h e s e  c a l c u l a t i o n s  a r e  g i v e n  in  T a b l e s  1 a n d  2. A s  p r e d i c t e d  t h e  

F r i e d m a n  m e t h o d  g a v e  v a l u e s  f o r  t h e  a c t i v a t i o n  e n e r g y  w h i c h  a r e  i d e n t i c a l  w i t h  

Ei.~t. F o r  t h e  s e c o n d  c a s e  t h e  O F W  m e t h o d  g a v e  r e s u l t s  in  c lo se  a g r e e m e n t  w i t h  

Ei .s t ,  b u t  i n  t h e  f i r s t  c a s e  t h e  e r r o r  w a s  s i gn i f i c an t .  I n  b o t h  c a s e s  t h e  e r r o r  in  EoF w 

w a s  in  g o o d  a g r e e m e n t  w i t h  t h e  e x p e c t e d  e r r o r  [1], w h i c h  i n c r e a s e s  w i t h  #2e, t h e  

s e c o n d  m o m e n t  o f  t h e  i n d i v i d u a l  a c t i v a t i o n  e n e r g i e s  E q .  (16).  

~2~, = ~ v , ( E ~ -  E~,~t)~/r_,v~ 06) 

TaMe 1 Competitive reactions, case 1 
E 1 = 167.36 kJ mol - l  (40 kcal mol-1), AI = 2x  l0 II s - I  
Ez = 251.04 kJ tool - !  (60 keal mol- l ) ,  A2 = I x 1019 s - l  

Heating rates: 1.5 and 2.0 deg rain -~ 

El . . . .  /~2~, E v  - E l , m ,  Eor-w - E i  . . . .  

k3 tool- l kJ tool- 1 kJ tool- 1 kJ mol-  1 

0.2 219.10 40.65 0.00 - 7.92 ( - 3.6%) 
0.5 226.91 37.90 0.00 - 7.15 ( - 2.7%) 
0.8 231.77 35.23 0.00 - 6.33 ( - 2.7%) 

Table 2 Competitive reactions, case 2 

E l = 1 9 0 k J m o l - I  A 1 = 1.28X1013S-I 
E 2 = 210 kJ tool -1 A 2 = 3.21 x 10 TM s -1 

Heating rates 1.5 and 2.0 deg-min -1 

Ei~,  mE, E ~ -  Ei .... Eorw - Ei,,~, 
kJ mol - ~ kJ mol - l kJ moi-  1 El tool - 

0.2 198.00 9.80 0.00 - 0 . 4 5  ( - 0.23 %) 
0.5 198.88 9.94 0.00 - 4.47 ( -  0.24%) 
0.8 199.28 9.97 0.00 - 0.47 ( -  0.24%) 

1 3 '  J. Thermal Anal. 32, 1987 
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Under-compensated independent reactions (cases 3 and 4) 

For reactions with under-compensating Arrhenius parameters the temperature 
at which reaction occurs increases with the activation energy. An example of  this is 
when the pre-exponential factors are equal (case 3). In case 4 the pre-exponential 
factors, As, were adjusted so that when the Ei of  two reactions differ by 10 kJ mol -  1 

then the reaction with the higher Ei should be 10% complete when the one with 
lower E~ was 90% complete. 

The results from these two calculations are shown in Table 3. For  brevity only 

the results for ~t = 0.5 are included. For  0t in the range 0.3 ~< ct ~< 0.7 deviations from 
E~.st were comparable to those for ~ =0.5 and deviations were less at the extremes 
of  ~t. Calculations were also performed using sets of  5 and 17 reactions. The results 
(not shown) indicated that the only effect of  increasing the number of  component  
reactions was to make Ev-  Einst and EoFw-- Einst smoother functions of  ~, without 
changing the average values. 

As expected E v shows positive deviations from El,st, but these deviations are 
barely significant. EoFw shows negative deviations from E~,st for these, and all other 
cases [1]. 

Over-compensated independent reactions (case 5) 

Situations in which reactions with high activation energies occur at lower 
temperatures than those with low activation energies are rare in practice, but the 
case has been considered here for completeness. The pre-exponential factors were 
adjusted so that the converse of  case 4 was obtained. 

The results for this case were similar to those for the preceding cases, except that 
E r shows negative errors, as predicted by Eq. (13). 

Compensated independent reactions (cases 6 and 7) 

Equation (13) predicts that if the rate constants of  the component first-order 
reactions are equal, then the Friedman method gives the exact value of  Ei.,t. This is 
demonstrated by case 6 (Table 4). Here the give pre-exponential factors have been 
adjusted to satisfy this condition when 0t = 0.5. Exact compensation can occur at 
one temperature only, and so at conversions lower than 0.5 the Arrhenius 
parameters are under-compensated, but above this point they are over- 
compensated. This is reflected by the deviations of  Ev from Einst. 

Another calculation was performed using component reactions having max- 
imum overlap of  their �9 vs. T curves, using the condition that at ~ = 0.5 then 
~i = 0.5 for all i (case 7). The required values of  A~ were slightly different from those 
employed above, but the Ev-Einst  values still changed sign, this time at ~ = 0.2. 

J. Thermal Anal. 32, 1987 
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Table 4 Independent reactions obeying a compensation law 

Parameters as Table 3 notes d and h 

e, .... ,/~2~, /r~-e,,,,, /~o~- e, .... 
kJ mol-  1 kJ mol-  1 kJ tool- 1 kJ tool- 1 

0.1 198.49 14.05 0.18 (0,09%) -0 .94  ( -0 .48%)  
0.2 199.37 14.10 0.24 (0.12%) -0 .95 ( -0 .48%)  
0.3 199.93 14.11 0.23 (0.11%) -0 .95  ( -0 .47%)  
0,4 200,35 14.11 0.15 (0.07%) -0 ,95 ( -0 .47%)  
0.5 200.66 14.10 0.00 - 0.95 ( - 0.47%) 
0.6 200.90 14.09 -0 .24  ( -0 .12%)  -0 .95 ( -0 .47%)  
0.7 201.04 14.08 -0 .63 ( -0 .31%)  -0 .95  ( -0 ,47%)  
0.8 201.04 14.07 - 1.29 ( -  0.64%) - 0.94 ( -  0.47%) 
0.9 200.69 14.02 -2 .62  ( -  1.30%) -0 .93 ( -0 .46%)  

Condition for maximum error (cases 8 and 9) 

As shown above compensated reactions result in EF being close to Ei,st. 
However, for extremes of under- and over-compensation EF is also close to Ei,,t 
because overlap is greatly reduced. 

The pre-exponential factors were varied on a logarithmic scale, between extreme 
under-compensation (case 4) and exact compensation (case 6), and the case which 
resulted in the greatest positive deviation is given in Table 3 as case 8. Similarly on 
the over-compensation side the greatest negative deviation is given by case 9. 

Discussion 

The numerical examples given here demonstrate that both the Friedman and 
OFW methods are valid for systems of multiple reactions, when the component 
reactions are of the same general type (i.e. have similar kinetic parameters). 
However, this validity can break down if the activation energies of the component 
reactions differ widely. For the Friedman method this occurs in the case of 
independent reactions only, but for the OFW method this applies to both 
independent and competitive reactions [1]. Other limitations to the use of iso- 
conversional methods have been discussed elsewhere [1]. 

The OFW haethod is predicted to always result in small negative deviations from 
Ei.st [I], whereas the Friedman method will normally be expected to give positive 
deviations. For this reason a comparison of the results from the two methods is a 
useful check on their accuracy. In favourable circumstances the difference in the 
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values for the activation energy obtained by the two methods may give useful 
information concerning the nature of the reactions occurring. 

Systems of competitive reactions 

For competitive reactions the Friedman method gives the true value of the 
instantaneous mean activation energy, and for this reason is to be favoured when it 
is suspected that such a situation exists. However, both the Friedman and OFW 
methods require the degree of conversion to be a weU-defined observable. This 
condition is not always satisfied if the competing reactions give different products. 
The validity of the OFW method has not been proved when the competing reactions 
obey different kinetic equations. 

Systems of independent reactions 

For truly independent reactions the question of variable products does not arise. 
However, care needs to be taken to prevent the occurrence of competitive side 
reactions; e.g. oxidation during organic pyrolysis. 

For realistic systems both methods are predicted to give reasonable results, but 
the maximum possible error of the OFW method is substantially less than that of 
the Friedman method. In addition, the OFW method requires integral (e.g. TG) 
data only, whereas the Friedman method also requires differential (e.g. DTG) data. 
For this reason the former method is particularly favoured for those thermal 
analysis techniques which give integral data, due to the errors involved in the 
differentiation step. 

A possible source of error for the OFW method, which is absent from the 
Friedman method is uncertainty in the actual heating rate, due to the tendency of 
the sample temperature to lag behind that of the furnace. This effect is particularly 
strong at low temperatures because of poor radiative heat transfer. Thus the true 
sample heating rate can be greater than the furnace heating rate. However, 
determination of the true heating rate, for the preceding 50-100 K, can easily be 
incorporated into a computerised analysis of thermal analysis data. 

For purely independent reactions, the OFW method places no constraints on the 
forms taken by the kinetic equations of the component reactions [1]. However, the 
Friedman method is normally slightly affected by the kinetic equations, as  Shown 
by Eq, (13). This effect is likely to become significant if the individual reactions have 
very different kinetic equations, and especially if an autocatalytic process is 
occurring. 

The author wishes to thank the British Gas Corporation for permission to publish this work. 
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Glossary of symbols 

A 
ci 

E 

Einst 
E~ 
EOFW 

f (~)  

f'(~t) 
i 
k 
t 

T 

v 

Gt 

#2E 

Arrhenius pre-exponential factor. 
Contribution of individual independent reactions to the overall reaction 
(dimensionless). 
Arrhenius activation energy. 
Instantaneous mean activation energy, as defined by Eq. (1). 
Activation energy as Calculated by the Friedman method. 
Activation energy as calculated by the Ozawa-Flynn-Wall method. 
Function describing the dependence of the rate constant on the degree of 
conversion. 
First derivative with respgct to ~ off(~).  
(subscript) Denotes a component reaction. 
Rate constant. 
Time. 
Temperature (K). 
Reaction rate. 
Degree of conversion (dimensionless). 
Heating rate. 
Instantaneous second moment of individual activation energies, as 
defined by Eq. (16]. 
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Zusmmaea f~ag  - -  Die Gfiltigkeit der Friedman-Methode wird fiir Systeme von iibedappenden 
Reaktionen einer Betrachtung unterzogen. Dureh mathematisehe Analyse und numerisehe Beispiele 
wird gezeigt, dab im Falle kompetitiver Reaktionen die Methode den richtigen Wert der jeweiligen 
mittleren Aktivierungsenergie ergibt. Fehler k6nnen jedoch auftreten, wenn diese Methode auf Systeme 
voneinander unabh/ingiger Reaktionen angewandt wird. Die relative Genauigkeit der Methoden von 
Friedman und Ozawa-Flynn-Wall wird mit Hinsicht auf komplexe Reaktionssysteme diskutiert. 
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Pe310Me - -  [ loga3aHa IIpHMeHHMOCTb MeTo~a ~pHz2MeHa ~,aa CI4CTeM C rtepeKpb~BaJoIRnMHCa 

peaKIlM~lmM. C IIOMOII[blO MaTeMaTMHeCKO[O aHa.rlll3a I4 qHCJIOBblX npHMepOB noga3aHo,  tlTO B c.Ilyqae 

KOHKypI4pyIOL!IHX peaKllI4M MeTO,~ ~aeT MCTHHHOe 3HaqeHHe MFHOBeHHOM cpej1Hefi 9HepFltM aKTHBaUH14. 

O,/1HaKO, HegOTOpb~e OIIIH6KM MOFyT BHOCHTbC$1, ec.rItt 3TOT MeTO~ rtpHMeHeH K CMCTeMaM C 

He3aBllCMMIa, IMH peaKIIitllMM. O6cy>K2IeHa OTHOCHTe.rIbHalt TOqHOCTb MeTO~OB q:I)pH~IMeHa H 

O3aBbI~I3.JIHHHa--YOJUIa IIO OTHOILIeHHIO K C210)KHbIM CMCTeMaM peaK1H4fi. 
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